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Optimal Correlating Transform for Erasure Channels
Gianmarco Romano, Pierluigi Salvo Rossi, and Francesco Palmieri

Abstract—In this letter, we derive a gradient-based algorithm
for computing the optimal transform when coefficients are trans-
mitted over an erasure channel whose statistics are known. The
discrete transform introduces correlation among the coefficients
with consequent performance improvement against losses. Simula-
tions show appreciable improvements over standard schemes and
also good robustness when loss probabilities are only roughly esti-
mated.

Index Terms—Erasure channel, multiple description coding,
transform coding.

I. INTRODUCTION

PACKET losses often have been associated to a multiple-
channel model in which each packet, assumed to travel in-

dependently from the others, is associated to a different channel.
Coding for such a channel is known as multiple description
coding (MDC) as the different messages (packets) sent over
the various channel are considered different source “descrip-
tions”: The idea is that when all the descriptions are received,
high-quality reconstruction of the source is possible, while if
only a small number of them is available, a smooth transition to
lower quality reconstruction can be obtained.

The question of optimum correlating transform for multiple
description coding has been addressed by Wang et al. [3] for 2
2 transforms and, more generally, by Goyal and Kovačević [4].
They pointed out the role of a correlating transform that, with
the introduction of dependence among the coefficients (descrip-
tions), “helps” the receiver to recover some information related
to lost packets. Correlated coefficients are sent into different bit
streams, each representing a description of the source. Goyal
and Kovačević [4] find optimal 2 2 integer transforms for
erasure channels and use them in practical encoders as building
blocks for transforming vectors of any size. They also found
some general analytical results for correlating transform in some
special cases, i.e., for a specific number of descriptions (number
of channels) and for a specific number of coefficients per de-
scription [4].

In this letter, we derive an algorithm for designing an optimal
correlating transform of any dimension and with any number of
descriptions. Our scheme is different with respect to those pre-
sented in [3] and [4] because we do not invert quantization and
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Fig. 1. Transform coding with erasures.

transform coding (integer transform). More comments about
this are included in the following.

This letter is organized as follows. In Section II, we de-
fine the basic model for transform coding with erasures and
define the optimization problem. Then, the gradient-based
algorithm is derived by using techniques from matrix differen-
tial calculus. In Section III, the gradient algorithm is applied
to a Markov-1 process on simulated channels that exhibit
independent Bernoulli losses. Results are also reported about
the robustness of our scheme against variations or inaccurate
estimates of the erasure probabilities.

II. SYSTEM DESCRIPTION: TRANSFORM

CODING WITH ERASURES

The coding–decoding cascade model is shown in Fig. 1,
where in addition to the traditional transform coding, we have
included an erasure mechanism that randomly cancels some
coefficients. The source is as an -dimensional i.i.d. random
vector with known correlation matrix.
The matrix is the transform that is to be found. The

transform coefficients , where ,
are quantized, with scalar quantizers , and sent
over the channel. The matrix models the erasure channel
that can cancel a number of components of , i.e.,
random erasures may happen. At the receiver, only
components are available for reconstructing .

Formally, at each channel use, the erasures can be described
by a random binary vector , with
if the th component is erased and otherwise. A compact
description of the erasure process can be done by defining the
residual vector containing the survivor components,
kept in the same order, and by defining an ma-
trix such that . The random matrix is
a permutation matrix with “0” and “1” as its elements, with a
number of rows equal to the survivors and with one “1” per row
in the position of the survivor. The structure of models the
type of erasure that can happen on the channel: For example,

may have a block structure to model packet-wise (group)
losses. Note that matrix has all zeros in the columns corre-
sponding to the erasures and no rows with all zeros.
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The receiver, which knows which coefficients have
been erased,1 provides a linear reconstruction of ,

via an Wiener filter
[6] , which, for each
erasure configuration , minimizes the mean square error

.
Following a standard approach, if quantization is sufficiently

fine, quantization noise is additive, has zero mean, has uncor-
related components, and is uncorrelated with the input signal

[7]. Therefore, the quantization noise correlation matrix is
diag , where is the variance of

the th coefficient . In general, has a form , where
is the number of bits allocated for the th component, and

and depend on the type of quantizer and on the distribution
of [8, Table 4.4]. The correlation matrix of the quantized co-
efficient is simply . By
defining diag , can be written in com-
pact form as , where is the Hadamard
product (element-by-elementmatrixproduct).Withsuchamodel
for quantization, the optimal reconstruction filter is

, and the corresponding
distortion for each erasure is

tr tr (1)

where . Given that the receiver acts optimally
on each “erased” vector, the objective of our transform is to
minimize the overall distortion averaged over all possible era-
sure events . Even if the sample
space of vector can be quite large as can assume con-
figurations, in most applications, it is likely that the coefficients
are grouped into a small number of packets, and therefore, the
number of loss configurations is limited to manageable values.
More generally, the overall cost function could be defined via
an appropriately chosen weight function instead of ,
i.e., . More specifically for various
applications, the designer could choose to assign different im-
portance to various loss configurations, not only as the result of
their occurrence probability but also on the basis of different fi-
delity criteria determined by the application. For example, the
designer may choose to emphasize central distortion, which is

when (all coefficients are received)
or vice-versa side distortion (not all coefficients are received) or
somethingelse.Thisgeneralityiswhatmakethisframeworkquite
flexible and different from previously proposed solutions. In a
different scheme proposed in the context of multiple description
coding [4],[9], transform and quantization were inverted, leading
toanorderwithaquantizer followedbyan integer-to-integer (I2I)
correlating transform [4]. The use of the I2I transform was also
motivated by the need to reduce the quantization error when a
nonorthogonal transform is used. The side effect is that the I2I
transform cannot change the central distortion that is due to the
quantization error, and to get better side distortions, some redun-
dancy in the rate is needed. Our scheme is quite different because
theuseofanonorthogonal transformbeforequantizationactsalso

1In a packet communication link, the receiver knows which packets have been
lost via a progressive numbering system (such as in RTP [5]).

on the quantization error and allows for a control mechanism also
for the central distortion improving overall system performance.

The cost function to minimize is then

tr tr (2)

Therefore, the problem of nontrivial optimal choice for is
to find

tr

subject to a constraint on the number of bits allocated to each
vector, which corresponds to a rate bit/dim.

No simple structure for matrix could be inferred from the
cost function, and a closed-form solution for is not likely to
exist, also because appears inside an inversion expression,
and the performance is weighted over all loss configurations.

We search for the optimal matrix with a gradient-ascent
algorithm with the recursion

(3)

where is the gradient matrix (gradient flow) of with re-
spect to , and is a scalar parameter that controls the speed
of convergence. Such a gradient is computed (see the Appendix
for the derivation) using techniques from matrix differential cal-
culus [10] to be

(4)

Note that the gradient evaluation requires the correlation matrix
of the quantization noise that depends on and on bit alloca-
tion. We constrain the overall rate, i.e., the number of bits to
be allocated to the quantizers, and the algorithm is organized as
follows.

Initialize to a random matrix and by optimal bit allocation,
and assign to each quantizers a number of bits; now, matrix
can be computed, and the calculation of a new with the gra-
dient algorithm is possible. The new variances on the outputs of

will determine the new bit allocations and a new , etc. The
iteration usually converges in a few steps to a minimum. This is
conceivably a local minimum, but performance evolution shows
almost invariably excellent improvement with respect to a uni-
tary matrix (no transform) or a randomly chosen .

The gradient expression requires the weighted sum over all
the erasure configurations. When coefficients are grouped into
descriptions, the number of all possible configurations is ,
where is the number of descriptions. In typical applications,
however, the number of descriptions is likely to be small, and
we have a manageable number of loss configurations.

Parts of this algorithm could be replaced with Monte Carlo
runs,forexample, intheevaluationsofthequantizationvariances,
where we typically use theoretical formulas. In our experience,
however, if at least three bits are assigned to each coefficient, the
overall performance is relatively insensitive to the approxima-
tions. Extensions of the procedure may be implemented on line,
as cooperative terminals may exchange channel loss statistics.
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III. SIMULATIONS

We have performed many simulations on various types of sig-
nals such as images and one-dimensional sequences obtaining
consistently excellent results [11], [12]. We report here typical
results with reference to transform coding of a Markov sequence

with autocorrelation matrix toeplitz
, with . This is the correlation structure that corre-

sponds to a sliding window on a Markov sequence. This model
approximates rather well the autocorrelation structure of signals
of practical interest, such as image blocks and some speech seg-
ments [8]. We apply the KL transform to such a sequence of
length and obtain a diagonal correlation matrix for the
resulting coefficients. We consider only transform co-
efficients, those with highest energy, and values of that range
from 0.7 to 0.95. Coefficients are partitioned into three groups
of dimension 12, by picking them up in a round-robin fashion
so that descriptions have approximately the same importance.
These groups are transmitted on independent erasure channels
with erasure probability . In order to evaluate the performance
of the correlating transform, we have also computed the average
mean-square error after losses when no correlating transform
is applied. In such a case, packets are formed with interleaved
quantized coefficients with no modifications. Such a distortion
is compared to the one obtained after the inclusion of the corre-
lating matrix . The gain is the
measure of the improvement (in decibels) when the optimum
correlating transform is applied.

Matrix is computed with the gradient ascent algorithm
from knowledge of the correlation matrix of the received data
and knowledge of the loss probability. At each iteration, the
gradient is evaluated according to (4), and a new matrix
is evaluated from (3), where is a scalar constant parameter
chosen to be 0.25, which is a value that has shown to assure a
local minimum within a few thousand iterations. Iterations stop
when , with in the order of . We use uniform
quantizers and a standard integer optimal bit allocation algo-
rithm [8] with a total number of bits to evaluate in
turn . The rate is bit/dim if considered after
KL compression. Otherwise, bit/dim for
the original vector. We have used as a weight function the
occurrence probabilities.

The theoretical gain, from (2), is shown in Fig. 2. Results
show gains ranging from about 1.5 to over 7 dB, with the highest
gain for each sequence for a loss probability of about 0.2. Con-
trolled correlation determines an excellent improvement com-
pared to the standard transform coding based on KL, especially
for low-to-moderate erasure probabilities. Within this range of
erasure probabilities, the algorithm assigns automatically good
side distortions and sacrifices central distortion, since it is more
likely to have only a subset of descriptions rather than all of
them. As the erasure probability increases, the probability of
not receiving any description increases to a level that makes the
advantage of using a correlating transform less drastic since the
receiver begins to have not much information from which it can
reconstruct the transmitted signal. In Fig. 2, we show also the
gain obtained when a transmission over the erasure channel is
simulated with the corresponding optimal correlating transform.

Fig. 2. Theoretical (asterisk �) and simulated (cross �) gain over KLT for
various �.

The results confirm the validity of the quantization noise model
at different values of for the number of bits assigned to each
coefficient. The reported results are to be considered typical as
also varying , , and the number of packets, we obtain sim-
ilar behaviors. We noted that the quantization assumption is sat-
isfied as far as at least a mean rate of 3 b/coefficient is utilized.

The above simulations are based on the perfect knowledge of
the channel behavior in the sense that the optimum correlating
transform for the erasure probability is used for a simulated
channel with erasure probability . To address the natural ques-
tion of what happens if is not exactly known, or it is varying,
we have also performed some simulations to test the robust-
ness of our scheme when a correlating transform determined
for a specific erasure probability is used on a different channel.
Fig. 3 shows the results. A plot of SNR versus the erasure prob-
ability is obtained for various optimal correlating transforms.
Each one is optimized for a different erasure probability. Also
shown are a plot of the SNR when no correlating transform is
applied and one for a randomly chosen matrix . The distance
between these curves is the gain due to the introduction of the
correlating transform and the gain we get from optimization.
These plots show that if the channel changes its probability, the
presence of the correlating transform is still convenient with re-
spect to the case with no correlating transform. From low to
moderate erasure probabilities, the difference in the SNR among
the different curves is small, confirming good robustness. The
random correlating transform improves the performances, but
the optimization algorithm gives always appreciable improve-
ments. The curves also show that when no losses occur, perfor-
mance degrades.

A designer may consider the performance in a no-loss sce-
nario as the minimum acceptable one and optimize for his best
estimate of channel loss.

In Fig. 4, a comparison with the optimal transform, as derived
in [4], is shown. We have considered optimal 2 2 transforms
and as performance parameter the overall distortion averaged
over all erasure configurations, , and a graph of versus the
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Fig. 3. Robustness against different probability of erasures.

Fig. 4. Comparison with Goyal’s transform. The overall average distortion
for the optimal transform derived with the gradient method is provided for
reference only and does not vary with redundancy. The average base rate is 3
b/component. The overall average distortion for the Goyal’s MDCT is obtained
for equal channel failure probabilities and is derived for a base rate of 2 and 3
b/component. Increase of redundancy improves side distortions, but the overall
performances are worse than that obtained with the transform derived with the
gradient method.R = diag(1; 0:0625).

redundancy is reported for the Goyal transform for different
base rates (2 and 3 b/component). The probability of erasure
for each description is , and the correlation matrix is

diag . Note that, as expected, adding redun-
dancy improves the performances of the Goyal transform be-
cause side distortions are better, but it has no effect on central
distortion that contributes to as well. Also in the same figure, a
reference value of distortion obtained with the optimal trans-
form derived with the gradient method is shown for comparison
purpose. In fact, no redundancy is added to the base rate used
to determine the optimal transform. The comparison shows that
for an average rate per component of 3 bits/component, the op-
timal transform determined with the gradient method performs
better, since the overall rate needed by Goyal transform to obtain
the same is always greater. Our scheme does not need redun-

dancy because the algorithm sacrifices the central distortion to
get better side distortions, which is something that the I2I trans-
form cannot achieve since the central distortion depends only
on the base rate.

APPENDIX

DERIVATION OF THE GRADIENT

We start with the computation of the differential of the trace

tr

Using the properties tr tr ,
( is a constant matrix) [10, p. 174, eq.

(5)], and , [10, p. 183, eq. (17)], we
have

tr

(5)

Using the property [10, p. 46, Th. 7] tr
tr tr , we have

tr

Let
. Since tr vect vect we

can see that [10, p. 176, Tab. 2] and
the expression (4) results.
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